GSM-R Interconnection & Roaming situation, Future plans

Mr. Achim Vrielink, Mr. Kampschulte DB Netz AG, Germany, Head of telecom services
Dirk Brucks, DB Netz AG, Germany, UIC ENIR Chairman
Content

- The International Scope of GSM-R
- Roaming and Interconnection
- International GSM-R
- Future Developments
GSM-R is the international platform for railway communication across borders

Railway voice communication
- Driver – Controller communication
- Railway Emergency Calls (REC)
- Shunting communication

ETCS data communication
- Train (OBU\(^{(1)}\)) – Trackside (RBC\(^{(2)}\)) communication

These services are needed for all trains, national and international visitors from abroad

\(^{(1)}\) Onboard Unit
\(^{(2)}\) Radio Block Centre
GSM-R Interoperability is network independent interworking of Voice and Data applications

Items needed:

Network
- Interconnected GSM-R networks and cross-border roaming services
- Infrastructure Managers as suppliers of GSM-R communication services
- Provisioning of mandatory EIRENE functionalities to all users, independent of their country of origin

Users
- EIRENE compliant cab radio
- ETCS modem (in trains)
- GSM-R handsets
 … all equipped with GSM-R SIM cards

Framework
- International agreements
- SIMs accepted in all GSM-R networks

(1) GIRA - GSM-R Interconnection & Roaming Agreement, (2) OMA - Operation & Maintenance Agreement, (3) TRA - Transit Routing Agreement

Interconnection & roaming is prerequisite for interoperability
Interconnection of the networks is the fundamental basis for GSM-R Roaming

Roaming (logical layer)
- Technical provisioning of services / SIM profiles
- Configuration of routing for roaming mobiles based on bi-lateral roaming agreements between network operators

Offers communication services to GSM-R radios abroad

Interconnection (physical layer)
- Physical interconnection links (2 Mbit/s lines) between national GSM-R networks
- European-wide interconnection of all GSM-R networks via transit routing forming our international GSM-R overlay network
- Redundant routing paths for control (SS7\(^{(1)}\)) & user (bearer) traffic
- Bi-lateral interconnection agreements (GIRA & OMA) between network operators
- Multi-lateral Transit Routing Agreement (TRA) valid for all interconnected networks

Allowing fixed GSM-R communication, e.g. Dispatcher-Disp. calls on borderlines

\(^{(1)}\) Signalling System number 7
The registration of the SIM-card follows the travelling train through the GSM-R networks

Example: Italian Loco / Freighttrain on Corridor A under ETCS L2 starting in Rotterdam

- SIM card
- ETCS OBU
- ETCS Radio
- VLR
- MSC
- RBC
- VLR
- MSC
- VLR
- HLR
- RBC
- RBC
- SIM IT

Notes:
1. VLR – Visitor Location Register
2. MSC – Mobile Switching Centre
3. HLR – Home Location Register
The international GSM-R overlay network is essential to support the roaming facilities and cross-border calls.

International GSM-R overlay network

Actual structure

Details

- Based on a non-hierarchical architecture
- 28 physical international GSM-R interconnections in operation
- Fault tolerant routing scheme for control (SS7) & user (bearer) traffic
- Latest design, activation with Routing Data Set (RDS) #9 at 22nd of September 2013
- 13 railways interconnected A, B, CH, CZ, D, DK, E, F, I, N, NL, S, SK
- Update: once a year -> new RDS
To ensure high reliability a fault tolerant routing scheme is implemented in the GSM-R overlay network.

Example: End to end routing paths for calls from NL Rotterdam to Italy.

Alternate routing path will be used automatically: NL(Rot) – B – F – I(Rom)
Actually are 27 GSM-R roaming services in operation

NMG Document N-9004

<table>
<thead>
<tr>
<th>Country</th>
<th>Infrastructure Manager Name</th>
<th>Country Abreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>ÖBB</td>
<td>A</td>
</tr>
<tr>
<td>Belgium</td>
<td>SNCB</td>
<td>B</td>
</tr>
<tr>
<td>Switzerland</td>
<td>SBB + BLS</td>
<td>CH</td>
</tr>
<tr>
<td>Czech Republ.</td>
<td>SZDC</td>
<td>CZ</td>
</tr>
<tr>
<td>Germany</td>
<td>DB Netz</td>
<td>D</td>
</tr>
<tr>
<td>Denmark</td>
<td>Banedanmark</td>
<td>DK</td>
</tr>
<tr>
<td>Spain</td>
<td>ADIF</td>
<td>E</td>
</tr>
<tr>
<td>France</td>
<td>RFF</td>
<td>F</td>
</tr>
<tr>
<td>Italy</td>
<td>RFI</td>
<td>I</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>CFL</td>
<td>L</td>
</tr>
<tr>
<td>Norway</td>
<td>JBV</td>
<td>N</td>
</tr>
<tr>
<td>Netherlands</td>
<td>ProRail</td>
<td>NL</td>
</tr>
<tr>
<td>Poland</td>
<td>PKP PLK</td>
<td>PL</td>
</tr>
<tr>
<td>Sweden</td>
<td>Trafikverket</td>
<td>S</td>
</tr>
<tr>
<td>Slovak Republ.</td>
<td>ZSR</td>
<td>SK</td>
</tr>
<tr>
<td>Great Britain</td>
<td>Network Rail</td>
<td>UK</td>
</tr>
</tbody>
</table>

Operational

- Ready for operation
- Expected

Notes

- Expected for 2014
The scalability of the present non-hierarchical GSM-R network architecture is limited. It needs to be restructured.

Present: Non-hierarchical architecture

Additional nodes
- In many countries single gateway nodes will be replaced by geo-redundant solutions
 -> almost doubling of nodes
- Planned expansions by adding new countries / nodes to the interconnection network

Limiting factors
- Configuration management of routing becomes too complex to handle

Consequence
- Decrease of availability and reliability
- Risk of circular routing

Roaming outages!
To overcome the limitations, the overlay network will be restructured to a layered network architecture

Approach

- Moving from a non-hierarchical to a hierarchical (layered) network architecture
 - for control (SS7) and user (bearer) traffic routing
- Installing **hub** functions in GSM-R interconnection network in order to connect multiple GSM-R networks
- Optimize the routing strategy
 - straight forward via hubs and multiple routing paths
 - load balancing

Result

- Increase of availability and reliability
- Flexible expansions

Target: Hierarchical architecture
In future GSM-R networks and interconnections migrate to IP\(^{(1)}\)

IP based interconnection network

- Replacement of the existing circuit switched interconnection network
- Full support of GPRS\(^{(2)}\) cross-border
- Reduction of OPEX for interconnection (only IP based instead IP + CSD\(^{(3)}\))
- Higher data capabilities possible
- Prepared for the successor of GSM-R (technology independent)
- From separate physical network to shared virtual network

\(^{(1)}\) IP – Internet Protocol, \(^{(2)}\) GPRS – General Packet Radio Service, \(^{(3)}\) CSD – Circuit Switched Data
In the GSM-R world, Europe is already interconnected and interoperable

Interconnection and Roaming

- All operational GSM-R networks are interconnected by a well designed and managed interconnection network
- The restructuring to a layered interconnection network has started to guaranty requested flexibility, reliability and availability
- Roaming is active where needed
- Border crossing emergency calls are implemented
- Every international GSM-R service is covered by:
 - GIRA (GSM-R Interconnection & Roaming Agreement)
 - OMA (Operation & Maintenance Agreement)
 - TRA (Transit Routing Agreement)
- UIC coordinated
 - NMG for legal business
 - ENIR for technical matters
Thank you for your kind attention

Achim Vrielink, DB Netz AG, Germany, Head of Telecom Services
Dirk Brucks, DB Netz AG, Germany, UIC ENIR Chairman